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Abstract
The equilibrium and stability of a sessile droplet laid on a spherical substrate
in the presence of line tension are studied within a continuum approach. The
destabilizing role played by the substrate’s curvature is analysed in detail for
both positive and negative line tensions. In the former case, several bifurcation
diagrams exist which show, among other things, that stable equilibria can fail
to exist when the droplet size, the substrate size and the ratio between the line
and the surface tension are comparable to one another. When line tension
is negative, the substrate’s curvature enhances the destabilization of sessile
droplets.

PACS number: 68.08.Bc

1. Introduction

Prompted also by applications in colloid science [1], the equilibrium and stability of sessile
droplets laid on curved substrates have received much attention in recent years. A colloidal
particle of, say, spherical shape in an emulsion is more likely to be wetted by the liquid phase
that is more affine to it, the less affine liquid becoming the dispersed phase. Traditionally,
emulsions are divided into direct (oil-in-water, o/w) or inverse (water-in-oil, w/o) emulsions,
according to whether the dispersed phase is oil or water. The remaining liquid phase is called
the continuous phase. Affinity between solid particles and the phases of an emulsion can be
measured by the contact angle between the particles and the water–oil interface. When this
angle, measured through the water phase, is slightly less than π/2, the particle remains at the
water–oil interface, and promotes stable direct emulsions, while it promotes inverse emulsions
when the contact angle slightly exceeds π/2. No stabilization occurs when the contact angle
departs too much from π/2 since in that case the particle prefers to stay within the bulk of
a liquid phase, aqueous or oily. Besides its wettability, the shape and the size of the particle
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are among the parameters that determine which phase of the emulsion is the dispersed one.
Different mechanisms exist by which solid particles stabilize emulsions [2]. To our scopes,
the most interesting is that requiring adsorption of the particles at the water–oil interface
followed by the formation of a film that surrounds the dispersed droplets and that hampers
their coalescence. This mechanism was studied by Levine and Bowen [3, 4], who focussed
on the capillary interactions between spherical particles adsorbed at a water–oil interface
and obtained the free-energy change that a solid particle undergoes when it is adsorbed by a
droplet. Their work has been recently extended to incorporate the effects of line tension on
the adsorption free energy of a single particle [5].

In a continuum approach, line tension is viewed as the excess free energy residing on
a contact line where three phases coexist. To appreciate its effects, either the droplet or the
substrate should be in the submicron regime. It has been conjectured (see section 5.2 of [1])
that line tension can either stabilize an emulsion or not, depending on its sign. In fact, while
a negative line tension seems to favour adsorption of solid particles, a positive line tension
penalizes the three-phase contact line and so prevents adsorption of solid particles.

The sign of line tension is a debated issue in wetting science. In a phenomenological
model where the line tension is a constant times the length of the contact line, it has been proved
that negative line tensions would make the free-energy functional unbounded from below, so
that no stable equilibria would exist [6]. In fact, by corrugating the contact line, it is possible
to find a pathway through which any equilibrium configuration can lower its energy. Against
such results, some authors reply that perturbations of the contact line unavoidably involve
perturbations of the free surface of the droplet that, in turn, increase the surface energy and
so depress the destabilizing effect of line tension (see, e.g., [7] and p 237 of [8]). Appealing
as these arguments might seem, they do not capture the essence of the problem: a line energy
proportional to the length of the contact line, with a negative constant of proportionality, can
always be made large and negative in a way that cannot be counterbalanced by reasonable
surface terms: to achieve this goal it is sufficient to make the contact line wigglier and wigglier.

However, the soundness of this mathematical argument hides another crucial issue. The
destabilizing feature of unstable modes is the high wavelength �m of the oscillations induced
on the contact line. When �m becomes a microscopic length comparable with the thickness �c

of the three-phase contact region that is replaced by the contact line in a continuum description,
then the modes operate at a length scale where the continuum approach needs corrections by
either adding curvature-dependent terms to line tension [9], or modelling the interaction with
the substrate through an effective potential diluted in the bulk [10]. Thus, claims against
negative values of the line tension are inappropriate until an estimate of �m is available: if
�m is larger than �c, then the instability is effective where the continuum model is, and so it
should be accounted for. But if �m is shorter than �c, unstable modes should be discarded as
inconsistent with the continuum model. This issue has been raised recently in [11] for liquid
filaments and in [12] for sessile droplets sitting on a flat substrate, where tentative estimates
of �m have been proposed.

Here we consider the equilibrium of a spherical droplet of radius r sitting on a spherical
substrate of radius R, by stressing the interplay between line tension and the substrate’s
curvature in determining the stability of equilibrium. Our method makes it possible to explore
all meaningful values of R, from R � r where our results reproduce those obtained in [12]
for a flat substrate, to R � r , where we can complete the stability analysis performed in [5]
and [13].

Besides the radius R of the substrate, two length scales of the problem are the ratio ξ

between the line and the surface tension and the size 3
√

3V/π of the droplet expressed through
its constant volume V . To appreciate the effects of constitutive parameters on equilibrium and
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stability, we proceed by fixing two of them at a time. For instance, to focus on the effects
of line tension, we can vary ξ and prescribe the geometry of the problem by fixing R and V .
In section 2, after introducing the continuum model we adopt, we perform the equilibrium
analysis. It turns out that a unique equilibrium configuration exists when the line tension
is negative, whereas up to three equilibria exist for positive line tensions. This should be
contrasted with the results of [13] where a spherical solid particle, acting as the substrate,
lies at a flat interface between two liquids and so no constraint is placed on the volume of
the (infinite) droplet. In that case, only two equilibria could exist, at most. Section 3 is
devoted to stability analysis. After recalling the basic ingredients of the stability criterion
we employ, we prove that for positive line tensions only one branch of solutions is stable
until it merges with an unstable branch at a turning point, in accordance with the results of
[5] and [13] obtained only by global stability arguments. The third branch, which was not
considered in [5] and [13] and which exists regardless of the value of line tension, is always
unstable. The analysis is easier to perform in terms of the equilibrium contact angle ϑc and
of the dimensionless parameters ε = ξ/r, � = r/R. The drawback of this procedure is that
these parameters are not constitutive, but depend on the solution. To interpret the results in
terms of constitutive parameters, we introduce a reverse mapping in section 4. We obtain two-
dimensional bifurcation diagrams by using cross sections in the parameter space. According to
the parameters that are held fixed, the results look different. When both the line tension and the
substrate’s radius are fixed, while the droplet’s volume is free to vary, three different scenarios
could occur, depending on the value of the bare contact angle ϑ0

c , that is, the equilibrium
contact angle when line tension is absent. When ϑ0

c is below a threshold ϑ0
cm, stable equilibria

exist provided that a droplet has neither a too large nor a too small volume. If ϑ0
c ∈ [ϑ0

cm, ϑ0
cM

]
stable equilibria exist only when the droplet’s volume is large enough. Finally, if ϑ0

c > ϑ0
cM

no stable equilibria survive for positive line tensions. It should be noted that both the critical
values ϑ0

cm and ϑ0
cM depend on the substrate’s curvature. Different regimes exist also when the

geometric setting is prescribed by fixing � := (3V/π)1/3/R. While for most values of � the
bifurcation diagrams are qualitatively similar to those obtained for flat substrates, no stable
equilibrium exists when � takes its values in a suitable range depending on the bare contact
angle.

All these results hold when the line tension is positive. When it is negative, we can prove
that the unique equilibrium solution is always unstable against modes that make the contact
line more and more corrugated. As in [12], we introduce the index of residual stability mrs

associated with an equilibrium configuration: it is an integer that counts the number of stable
modes. The higher is mrs, the more we are confident that negative line tensions are reliable
since high values of mrs mean that the unstable modes require wild corrugations of the contact
line to induce instability, and so they are likely to operate at length scales where the continuum
approach employed here does not hold. As a result, we prove that the substrate’s curvature
somehow amplifies the destabilizing role of negative line tension since the reservoir of stable
modes is depleted when the droplet sits on a curved substrate. This conclusion also leads to
a critical examination of the results discussed in [5], since it proves that the fact that negative
line tension reduces the energy of a sessile droplet at equilibrium does not assess its stability
for which a local analysis such as that presented here is required.

To study global stability, first-order phase transitions should also be considered, by
comparing the energy of a droplet sitting on the substrate with the energy of two particular
configurations. The former, where the substrate and the droplet are both merged in the
ambient fluid, but are detached from one another; the latter, where the substrate is wrapped
by the droplet which, in turn, is merged within the ambient fluid. This study is sketched in
section 5 along the lines of [5] and [13], but also accounting for finite-volume effects and
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Figure 1. A sessile droplet (shaded region) sitting upon a spherical substrate. The contact angle
ϑc is the angle between the conormal unit vectors νS and νS∗ of the contact line, viewed as a curve
on S and on S∗, respectively.

Table 1. Synopsis of different notations. The suffixes lv, ls and sv employed, for instance, in [13]
denote the liquid–vapour, the liquid–solid and the solid–vapour interfaces. The notation employed
in [5] is tailored on the theory of emulsions where ow denotes the interface between the liquid
phases of the emulsion, oil and water; sd stands for the interface between the solid particle and the
dispersed phase, and sc denotes the interface between the solid particle and the continuous phase.

This paper Reference [13] Reference [5]

γ γlv γow

w γlv − γls + γsv γow − γsd + γsc

stressing the role of curvature in making encapsulation or detachment of the droplet from the
substrate energetically favoured. Finally, section 6 closes the paper with some summarizing
remarks and five appendices contain technical details of the numerical procedures adopted in
this paper.

2. Equilibria

Here we determine the equilibrium configurations of a sessile droplet B laid on a spherical
substrate of radius R, as sketched in figure 1. The droplet B consists of incompressible fluid
and so its volume has a fixed value V . The boundary ∂B of B can be split as ∂B = S ∪ S∗,
where S is the free surface in contact with a third phase and S∗ is the adhering surface, in
contact with the solid substrate. The surfaces S and S∗ meet along the contact line C, a closed
curve where three phases coexist at equilibrium. The simplest free-energy functional for this
system is

F[B] = γ

∫
S

da + (γ − w)

∫
S∗

da + τ

∫
C

ds, (1)

where γ > 0 is the surface tension pertaining to the interface S, w > 0 is the adhesion
potential that measures the adhesive properties of the substrate, and τ is the line tension of C
which, in principle, could be of either sign.

For the ease of the reader, in table 1 we compared our notation with those adopted in [13]
and [5].

The free-energy functional (1) is the simplest functional that can account for line tension
effects. Several simplifying assumptions are involved in (1), which we briefly discuss here.
First, the surface tension γ is assumed to be constant and no curvature corrections like that
introduced by Tolman [14] have been considered. By taking both w and τ constant, we are
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making two assumptions. First, that the substrate is chemically homogeneous. Second, and
more important, that the substrate’s curvature does not affect the adhesion potential w and
the line tension τ . As noted in [12], introducing terms in the energy that depend on the curvature
of S,S∗ or C could modify the outcomes of the stability analysis, especially for negative
line tensions. In fact, some preliminary results [15] show that curvature corrections to line
tension increase the order of the differential operators entering the natural boundary conditions
associated with the stability problem (see equation (4.10) of [16]). These corrections, which
operate at a length scale smaller than the characteristic length |ξ | taken here as a lower bound
for our model, indicate that the destabilizing role of negative line tension is reduced, but still
exists and depends on the parameters of the problem such as, for instance, the contact angle.

In (1) no bulk effects are accounted for, and so the equilibrium free surface S has constant
mean curvature (see, e.g., [16]). This hypothesis amounts to considering droplets that are
small enough to neglect gravity and also to neglecting the forces between the droplet and the
substrate molecules that are effective in a narrow region close to S∗. These forces enter the
free-energy functional through a bulk term whose density is closely related to the disjoining
forces [17, 18]. They modify the droplet’s equilibrium profile in a region close to the contact
line and might affect the Young equation along the contact line C. For the stability analysis
we have in mind, the first feature would lead to considerable technical complications, since a
sphere would no longer solve the equilibrium equation, and so the spectral analysis contained
in section 3 would be harder to accomplish in detail. Apart from this, since disjoining pressure
does not modify dramatically the mathematical structure of the stability analysis, we expect it
will modify its conclusions only quantitatively but not qualitatively. It remains true, however,
that only a complete stability analysis including both curvature corrections and disjoining
pressure could clarify this issue. Finally, while thermal fluctuations do not appear in (1), the
stability analysis performed in section 3 can be interpreted in terms of thermal fluctuations:
in fact, the perturbing modes affecting any equilibrium configurations can be conceived as
having a thermal origin.

Line tension affects the boundary condition along C which generalizes the classical Young
equation and reads as [16]

γ cos ϑc + γ − w − τκ∗
g = 0. (2)

In (2), ϑc is the contact angle, the angle between the droplet’s and the substrate’s conormal
unit vectors along C (see figure 1), and κ∗

g is the geodesic curvature of C viewed as a curve
of S∗. We also assume that the ratio w−γ

γ
ranges in [−1, 1], so that a bare contact angle

ϑ0
c ∈ [0, π ] satisfying

cos ϑ0
c = w − γ

γ
(3)

can be defined: the angle ϑ0
c would be the contact angle at equilibrium, if the line tension were

absent. The ratio

ξ := τ

γ
(4)

has the same sign as the line tension and it will play a central role in the subsequent analysis,
as |ξ | sets the typical length scale of the model. Roughly speaking, |ξ | is the size of a
hypothetical droplet for which surface and line energies in (1) are comparable. Experimental
data [19] suggest that ξ can be of either sign, with magnitude ranging between 10−8 and
10−6 m. Hereafter, we assume a conservative attitude by taking �c = |ξ |, so that length scales
shorter than |ξ | are inaccessible to our model.
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Among surfaces with constant mean curvature, here we focus on droplets B having a
spherical cap of radius r as a free surface. The dimensionless ratio

ρ := r

R
(5)

will be frequently employed in what follows. The system formed by the droplet and the
substrate is axially symmetric about the direction ey shown in figure 1. The symmetry axis
ey intersects the free surface S at P, where the outward unit normal vector ν of the droplet
is νP = ey , and the adhering surface S∗ at Q where the outward unit normal vector ν∗ is
ν∗Q = −ey . Along the contact curve, the angle ϑS between ν and νP and the angle ϑS∗
between ν and ν∗Q are constant. Simple geometric considerations yield

ϑc = ϑS − ϑS∗

sin ϑS = 1

ρ
sin ϑS∗

(6)

from which we obtain

cos ϑS = cos ϑc − ρ√
1 + ρ2 − 2ρ cos ϑc

cos ϑS∗ = 1 − ρ cos ϑc√
1 + ρ2 − 2ρ cos ϑc

. (7)

The geodesic curvatures of C, viewed as a curve on either S or S∗, are (see, e.g., p 249 of [20])

κg = (ρ − cos ϑc)

r sin ϑc

(8)

and

κ∗
g = (ρ cos ϑc − 1)

r sin ϑc

, (9)

respectively. To recast (2) in a dimensionless form, it is expedient to introduce the ratios

ε := ξ

r
and 
 := ξ

R
(10)

that change sign when the line tension does. We note that 
 is a constitutive parameter while
ε, like �, depends on the actual solution through the droplet’s radius r. Although in principle

 could be any real number, we confine ourselves to the range |
| < 1, so that the radii of the
substrate cannot be shorter than R = |ξ |. This is consistent with our view of |ξ | as the shortest
length scale accessible to the model. For future use, we note that, by equations (5) and (10),

ρ = 


ε
. (11)

Finally, we introduce two more dimensionless parameters,

τ ∗ := ξ

3

√
3V
π

, (12)

which compares ξ with the typical size of the droplet, and

� :=
(

3V
π

)1/3

R
= 


τ ∗ . (13)

Prescribing � is the same as fixing the geometry of the substrate and the volume of the droplet,
while the line tension is left free. On the other hand, when 
 is prescribed, the geometry of
the substrate and the line tension are held fixed whereas the volume of the droplet acts as a free
parameter. Here, we first illustrate our analysis at fixed 
 (
-ensemble), and then we map
the results at fixed � (�-ensemble) in the next subsection. To be consistent, we shall confine
ourselves to the case |τ ∗| < 1, so that even the size of the droplet cannot be smaller than |ξ |.
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2.1. Equilibrium in the 
-ensemble

By use of equations (3) and (9) we can write (2) as

ε(−1 + ρ cos ϑc) = sin ϑc

(
cos ϑc − cos ϑ0

c

)
(14)

which can be solved to obtain ε as a function of the contact angle ϑc, parameterized by ϑ0
c

and 
:

ε = �
(
ϑc

∣∣ϑ0
c , 


)
:= cos ϑc(
 − sin ϑc) + cos ϑ0

c sin ϑc. (15)

In (15), a bar separates the variable ϑc from the set of constitutive parameters ϑ0
c and 


on which � depends. As already remarked in the introduction, the droplet’s volume has a
constant value V . Viewing B as the set difference between two spherical caps of radii R and
r, subtending angles 2ϑS and 2ϑS∗ (see figure 1), it is not difficult to prove that

3V

πr3
= 2 + ρ2 + 2ρ4 − 2(ρ + ρ3) cos ϑc − ρ2 cos ϑ2

c

ρ3
√

1 + ρ2 − 2ρ cos ϑc

− 2

ρ3
+ 2 =: V (ϑc, ρ), (16)

where equations (7) have been used too. By recalling definitions (10)1 and (12), we can solve
(16) with respect to ε, obtaining

ε∗(ϑc, ρ|τ ∗) = V∗(ϑc, ρ) := τ ∗ 3
√

V (ϑc, ρ). (17)

Before solving equations (15) and (17), we note that when ρ cos ϑc = 1, κ∗
g vanishes and so

C is a geodesic curve of S∗. Then, by (2), the line tension does not affect the equilibrium and
the contact angle ϑc coincides with ϑ0

c . Thus, ρ = 1/cos ϑ0
c holds which, when replaced in

(17), yields the relation among the constitutive parameters R,V and ϑ0
c in this special case:

3V

πR3
≡ �3 = 2 − cos2 ϑ0

c − cos4 ϑ0
c + 2 sin ϑ0

c

(
1 − cos3 ϑ0

c

)
sin ϑ0

c cos3 ϑ0
c

.

Finally, by (9), the contact line only wets the upper hemisphere of the substrate when
ρ cos ϑc < 1, while it also wets the lower hemisphere when ρ cos ϑc > 1.

Let P := {(
ϑ0

c , τ ∗, 

)}

be the set of constitutive parameters that parameterize the
solutions of equations (15) and (17). Given a point P ≡ (

ϑ0
c , τ ∗, 


)
in P , any solution

will be characterized by the set (ϑc, ε, ρ) that can be viewed as a point in a further set G. To
solve equations (15) and (17) we first introduce the function

f
(
ϑc

∣∣ϑ0
c , 


)
:= 


�
(
ϑc

∣∣ϑ0
c , 


) (18)

which, by (11), is the effective value of ρ on the solution of (15). For a given point in P , we
subtract (17) from (15) and then use (18) to obtain

ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
:= �

(
ϑc

∣∣ϑ0
c , 


)− V∗
(
ϑc, f

(
ϑc

∣∣ϑ0
c , 


)) = 0. (19)

The function f in (18) is defined when �
(
ϑc

∣∣ϑ0
c , 


) �= 0. We expect that both
V∗
(
ϑc, f

(
ϑc

∣∣ϑ0
c , 


))
and ϒ

(
ϑc

∣∣ϑ0
c , τ ∗, 


)
have a jump at the points ϑ̄c where �

(
ϑc

∣∣ϑ0
c , 


)
vanishes. In fact, let us suppose that 
 > 0 and that ϑ̄c is the smallest, simple zero of
�
(
ϑc

∣∣ϑ0
c , 


)
: minor adjustments are required to cover other cases. Since �

(
0
∣∣ϑ0

c , 

) =


 > 0, we conclude that

lim
ϑc→ϑ̄∓

c

f
(
ϑc

∣∣ϑ0
c , 


) = ±∞

and so, by (16),

lim
ϑc→ϑ̄−

c

V∗
(
ϑc, f

(
ϑc

∣∣ϑ0
c , 


)) = τ ∗ 3
√

4 and lim
ϑc→ϑ̄+

c

V∗
(
ϑc, f

(
ϑc

∣∣ϑ0
c , 


) = 0,
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from which the result follows. The point ϑ̄c, however, solves (19) only for the triple
(
ϑ0

c , 0, 

)

that is, by (12), when the line tension vanishes, since only in that case ε = 0 also solves (17)
for finite values of V .

To study how the zeroes of ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
depend on τ ∗ we fix the parameters 
 and

ϑ0
c and note that, by definition,

lim
ϑc→0+

�
(
ϑc

∣∣ϑ0
c , 


) = lim
ϑc→0+

ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


) = 
, (20)

lim
ϑc→π

�
(
ϑc

∣∣ϑ0
c , 


) = −
, (21)

lim
ϑc→π

ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


) = −
 − τ ∗ 3
√

4, (22)

lim
τ ∗→0

ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


) = �
(
ϑc

∣∣ϑ0
c , 


)
, (23)

and

lim
ϑc→0+

d�
(
ϑc

∣∣ϑ0
c , 


)
dϑc

= cos ϑ0
c − 1 � 0. (24)

It is possible to verify that the continuous function �
(
ϑc

∣∣ϑ0
c , 


)
has, at most, one local

maximum and one local minimum in the set (0, π),

�m

(
ϑ0

c , 

)

:= min
(0,π)

�
(
ϑc

∣∣ϑ0
c , 


)
and �M(ϑ0

c , 
) := max
(0,π)

�
(
ϑc

∣∣ϑ0
c , 


)
.

When these critical points exist, we call ϑm
c and ϑM

c the values of ϑc where �
(
ϑc

∣∣ϑ0
c , 


)
attains them,

�m

(
ϑ0

c , 

) = �

(
ϑm

c

∣∣ϑ0
c , 


)
, �M

(
ϑ0

c , 

) = �

(
ϑM

c

∣∣ϑ0
c , 


)
. (25)

By equations (20) and (24), it follows that ϑm
c < ϑM

c . Moreover, the function ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
also attains, at most, one local minimum ϒm

(
ϑ0

c , τ ∗, 

)

and one local maximum
ϒM

(
ϑ0

c , τ ∗, 

)

in (0, π) at points whose distance from ϑm
c and ϑM

c , respectively, depends on
τ ∗. To avoid clutter, in what follows we shall only stress the dependence of ϒm and ϒM on
τ ∗ by setting ϒm(τ ∗) := ϒm

(
ϑ0

c , τ ∗, 

)

and ϒM(τ ∗) := ϒM
(
ϑ0

c , τ ∗, 

)
. We also call ϑ̄ (i)

c

the ith zero of �
(
ϑc

∣∣ϑ0
c , 


)
, where i is strictly positive, as follows from equations (20), (21),

and the continuity of �
(
ϑc

∣∣ϑ0
c , 


)
. Finally, let us introduce the functions τ ∗m

c

(
ϑ0

c , 

)

and
τ ∗M
c

(
ϑ0

c , 

)

> τ ∗m
c

(
ϑ0

c , 

)

such that

ϒm
(
τ ∗m
c

(
ϑ0

c , 

)) = 0 and ϒM

(
τ ∗M
c

(
ϑ0

c , 

)) = 0.

Since we do not have an analytic expression for τ ∗m
c

(
ϑ0

c , 

)

and τ ∗M
c

(
ϑ0

c , 

)
, we compute them

through a numerical algorithm illustrated in appendix A. At fixed 0 < 
 < 1, the function
τ ∗m
c

(
ϑ0

c , 

)

tends to zero when ϑ0
c → θ0

c1, with θ0
c1 satisfying �m

(
ϑc

∣∣θ0
c1, 


) = 0. Similarly,
the function τ ∗M

c

(
ϑ0

c , 

)

tends to zero when ϑ0
c → θ0

c2, satisfying �M
(
ϑc

∣∣θ0
c2, 


) = 0. Finally,
when 
 = 1, θ0

c1 ≡ θ0
c2 = π/2 and the maximum and the minimum of �

(
ϑc

∣∣ϑ0
c , 


)
merge

into an inflection point.
After these general remarks, we now show that for positive line tensions (19) has a number

of zeroes varying from one to three, depending on the values of τ ∗. Hereafter, we examine
different cases: the reader can also follow the discussion by looking at figure 2.

(i) �m

(
ϑ0

c , 

)

> 0, τ ∗ ∈ [0, τ ∗m
c

(
ϑ0

c , 

))

. The curves ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
move downwards

from �
(
ϑc

∣∣ϑ0
c , 


)
maintaining both ϒm(τ ∗) and ϒM(τ ∗) positive. Equation (19) has a

unique root p3(τ
∗) ∈ (ϑM

c , π
)
.
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Figure 2. Graphs of �(ϑc|ϑ0
c , 
) (solid curve) and ϒ(ϑc|ϑ0

c , τ ∗, 
), for three values of τ ∗, in
the (ϑc, ε) plane. When ϑ0

c = π
4 and 
 = 0.3 we chose, from top to bottom, τ ∗ = 0.1, 0.32, 0.63

to illustrate the cases where τ ∗ < τ ∗m
c (ϑ0

c , 
), τ ∗m
c (ϑ0

c , 
) < τ ∗ < τ ∗M
c (ϑ0

c , 
) and τ ∗ >

τ ∗M
c (ϑ0

c , 
), respectively. In the first and third cases (19) has only one zero, while in the second
case three distinct zeroes exist.

(ii) �m

(
ϑ0

c , 

)

> 0, τ ∗ ∈ [
τ ∗m
c

(
ϑ0

c , 

)
, τ ∗M

c

(
ϑ0

c , 

)]

. The minimum ϒm(τ ∗) of ϒ
(
ϑc

∣∣ϑ0
c ,

τ ∗, 

)

is now negative, while ϒM(τ ∗) is still positive. By equations (20) and (22),
three distinct roots p1(τ

∗) � p2(τ
∗) � p3(τ

∗) of (19) exist, with p1(τ
∗) = p2(τ

∗) at
τ ∗ = τ ∗m

c

(
ϑ0

c , 

)
, and p2(τ

∗) = p3(τ
∗) at τ ∗ = τ ∗M

c

(
ϑ0

c , 

)
.

(iii) �m

(
ϑ0

c , 

)

> 0, τ ∗ > τ ∗M
c

(
ϑ0

c , 

)
. Both ϒm(τ ∗) and ϒM(τ ∗) are negative and (19) has

a unique root p1(τ
∗) ∈ (0, ϑm

c

)
.

Hence, when the line tension is positive, there are two surfaces τ ∗ = τ ∗M
c

(
ϑ0

c , 

)

and
τ ∗ = τ ∗m

c

(
ϑ0

c , 

)

inP such that three equilibria exist if τ ∗ ∈ (τ ∗m
c

(
ϑ0

c , 

)
, τ ∗M

c

(
ϑ0

c , 

))

, while
a unique equilibrium configuration exists, if either τ ∗ < τ ∗m

c

(
ϑ0

c , 

)

or τ ∗ > τ ∗M
c

(
ϑ0

c , 

)
.

Since ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
is continuous in any interval bounded by successive zeroes of

�
(
ϑc

∣∣ϑ0
c , 


)
, the procedure just shown also works when �m

(
ϑc

∣∣ϑ0
c , 


)
< 0, regardless of

the sign of �M

(
ϑc

∣∣ϑ0
c , 


)
:

(i) �m

(
ϑ0

c , 

)

< 0,�M

(
ϑ0

c , 

)

> 0, τ ∗ ∈ [0, τ ∗M
c

(
ϑ0

c , 

)]

. Equation (19) has three distinct
roots p1(τ

∗) < p2(τ
∗) � p3(τ

∗), with p2(τ
∗) = p3(τ

∗) at τ ∗ = τ ∗M
c

(
ϑ0

c , 

)
.

(ii) �m

(
ϑ0

c , 

)

< 0,�M

(
ϑ0

c , 

)

> 0, τ ∗ > τ ∗M
c

(
ϑ0

c , 

)
. Only the root p1(τ

∗) ∈ (0, ϑm
c

)
of

(19) survives.
(iii) �m

(
ϑ0

c , 

)

< 0,�M

(
ϑ0

c , 

)

< 0. Only p1(τ
∗) ∈ (0, ϑm

c

)
solves (19), regardless of the

value of τ ∗.

In figure 3 we plotted graphs of log10τ
∗m
c

(
ϑ0

c , 

)

and log10τ
∗M
c

(
ϑ0

c , 

)

at different
constant values of 
 to appreciate the effects of the substrate’s curvature on the equilibrium
configurations. In the limit where 
 = 0, the substrate is flat and the results coincide with
those obtained in [12], τ ∗m

c

(
ϑ0

c , 0
) ≡ 0, while τ ∗M

c

(
ϑ0

c , 0
)

tends to the curve separating a
region where two equilibria exist from a region where no equilibrium exists. The root p1(τ

∗)
tends to (0, 0, 0), which is a spurious solution already found in [12].
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Figure 3. The curves plotted here are cross sections at constant 
 of the surfaces log10τ
∗M
c (ϑ0

c , 
)

and log10τ
∗m
c (ϑ0

c , 
): 
 = 0.01 (solid, thick lines), 
 = 0.3 (dotted lines) and 
 = 0.9 (dashed
lines). For any fixed 
, three equilibria exist in the region between the two curves, whereas only
one equilibrium configuration survives elsewhere.

If the line tension is negative, by use of equations (20)–(23) it follows that

�
(
ϑm

c

∣∣ϑ0
c , 


)
< ϒ

(
ϑm

c

∣∣ϑ0
c , τ ∗, 


)
< ϒ

(
0
∣∣ϑ0

c , τ ∗, 

) = �

(
0
∣∣ϑ0

c , 

) = 
 < 0

and

�M
(
ϑ0

c , 

)

> 0

by which we conclude that a root ϑ̄ (1)
c of �

(
ϑc

∣∣ϑ0
c , 


)
exists for any choice of ϑ0

c and 
. Since
now ϒ

(
ϑc

∣∣ϑ0
c , τ ∗, 


)
> �

(
ϑc

∣∣ϑ0
c , 


)
we conclude that (19) has a root in

(
0, ϑ̄ (1)

c

)
, regardless

of the values of ϑ0
c and 
. This root is unique, since �

(
ϑc

∣∣ϑ0
c , 


)
does not vanish elsewhere,

as figure 4 illustrates.

2.2. Equilibrium in the �-ensemble

To study the effects of line tension on the equilibrium we rephrase the results just obtained in
the �-ensemble, where 
 is varied at constant �. Different scenarios are predicted, according
to the values of the bare contact angle, whether it exceeds π/2 or not. In figure 5 E123, E1,
and E3 denote the regions where either three equilibria exist or a unique equilibrium—p1 or
p3, respectively—exists. In what follows, we refer to the curves separating E123 from either
E1 or E3 as to the E1- or the E3-curve. Finally, we refer to the locus where � is constant as to
the �-curve. If the bare contact is larger than π/2 (see figure 5(b), where ϑ0

c = 9π/16), we
always pass from E123 to E1 when line tension increases. When ϑ0

c < π/2 (see figures 5(a)
and 6, where ϑ0

c = 7π/16 and π/3, respectively) different scenarios occur, depending on the
value of �.

(i) � > �0
(
ϑ0

c

)
:= 1

/
τ ∗m
c . The �-curve intersects the E3-curve once: on increasing 
, we

pass from E123 to E3 (figure 5(a)).
(ii) � = �0

(
ϑ0

c

)
. A further intersection between the �- and the E3-curve emerges at 
 = 1.

(iii) �1
(
ϑ0

c

)
< � < �0

(
ϑ0

c

)
(see figure 6(a)). The �- and the E3-curve intersect each other

twice when 
 < 1. Then, on increasing 
 towards 1 we pass from E123 to E3 and back
to E123.
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Figure 4. The functions ϒ(ϑc| 2π
3 , −0.4642,−0.1) and �(ϑc| 2π

3 ,−0.4642) are plotted against
ϑc . Equation (19) has now a unique root, for all ϑ0

c ∈ (0, π) and 
 < 0.
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Figure 5. In (a) we plotted graphs of log10τ
∗m
c (7π/16, 
) (dotted curve) and log10τ

∗M
c (7π/16, 
)

(dashed curve). In (b), where ϑ0
c = 9π/16, only log10τ

∗M
c (9π/16, 
) (dashed curve) has been

plotted since τ ∗m
c (·, 
) never crosses the line at constant ϑ0

c > π/2, as can be seen from figure 3.
In the region E123, three equilibria exist, in E1 only the equilibrium p1(τ

∗) exists and in E3 only
the equilibrium p3(τ

∗) exists. The solid curve is the set where � = 100. On moving along this
curve all geometric parameters are held fixed and we can study the effects of line tension on the
equilibrium. On increasing line tension we move from E123 to E3 in case (a) and to E1 in case
(b). If � is small enough, we can move to E1 even if ϑ0

c < π/2 (see figure 6).

(iv) � = �1
(
ϑ0

c

)
:= 1

/
τ ∗m
c . The �-curve intersects the E1-curve at 
 = 1.

(v) �c

(
ϑ0

c

)
< � < �1

(
ϑ0

c

)
(see figure 6(b)). Besides two intersections with the E3-curve,

the �-curve also intersects the E1-curve at 
 < 1. Now, on increasing 
 from 0 to 1 we
pass from E123 to E3 back to E123 and, finally, to E1.

(vi) � = �c

(
ϑ0

c

)
(see figure 6(c)). The �-curve is tangent to the E3-curve at a point where,

in turn, two distinct equilibria exist. Apart from this point, we remain in E123 until we
enter the E1 region.

(vii) � < �c

(
ϑ0

c

)
(see figure 6(d)). The �-curve only intersects the E1-curve and so we pass

from E123 to E1 as 
 increases from 0 to 1.
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Figure 6. Graphs of log10τ
∗M
c (π/3, 
) (dotted line) and log10τ

∗m
c (π/3, 
) (dashed line) have

been plotted here. The solid line is the set where � = 3.155 (a), 3.105 (b), 3.09296 (c), 3.05 (d),
respectively. This figure shows the scenarios outlined in the text when ϑ0

c < π/2 and � is
sufficiently small.

We stress that the complex scenario outlined here holds only when � ranges in a narrow
interval [�c,�0]: in the case where ϑ0

c = π/3,�0 � 3.177,�1 � 3.14 and �c � 3.093.
The value of �c is O(1) for all values of ϑ0

c < π/2, so that the droplet and the substrate size
are comparable. Moreover, the reentrant transition from E123 to E3 occurs at 
 close to 1,
which means that both R and 3

√
3π/V are comparable with ξ , and so quite small. We also note

that, while computing �0 is not difficult, arriving at �c is a non-trivial task since no analytic
expression for τ ∗M

c exists. The strategy followed to arrive at �c is outlined in appendix B.
The regimes displayed here give rise to different bifurcation diagrams that we will study in
section 4.

3. Stability

In this section we apply the criterion proposed in [16] to determine the local stability of the
equilibrium configurations just found. The analysis extends that applied in [12] to sessile
droplets laid on a flat substrate. In [16], the sign of the second variation of F was determined
by finding the sign of the smallest eigenvalue µ of a differential operator. As a first step, the
second variation δ2F of F is minimized on the set∫

S
u2 da = 1, (26)

where u is the component of a perturbation field along the unit normal vector ν of S. Moreover,
to enforce the incompressibility of the droplet, u should also obey the constraint∫

S
u da = 0. (27)
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The integral constraints (26) and (27) are then added to δ2F by introducing two Lagrange
multipliers −µ/2 and λ. The Euler equation for the auxiliary functional

F [u] := 1

2

∫
S
{|∇su|2 + αu2} da + λ

∫
S

u da − 1

2
µ

∫
S

u2 da +
1

2

∫
C

{
ξu′2

s∗ − βu2
s∗
}

ds (28)

is then determined. In (28), a prime stands for differentiation with respect to the arc-length s
on C, us∗ is related to u through

us∗ = u

sin ϑc

,

and the function

α := 2K − H 2 (29)

depends on the total curvature H and on the Gaussian curvature K of S. Finally,

γβ := τ
(
K∗ + κ∗2

g

)
+ γ [H ∗ sin ϑc + H cos ϑc sin ϑc + κg sin2 ϑc] (30)

where κg and κ∗
g are the geodesic curvatures of the contact line C, as a curve embedded in either

S or S∗. Due to the different convexities of S and S∗ we have H = 2/r and H ∗ = −2/R.
Moreover, K = 1/r2 and K∗ = 1/R2. By use of equations (8)–(9), after some algebraic
manipulations we can write the Euler equation for the functional F as

�su +

(
µ +

2

R2

)
u = λ on S, (31)

together with the natural boundary condition(
∂u

∂ϑ
− ε

sin ϑ2
c sin ϑ2

∂2u

∂ϕ2
− 1

sin ϑ2
c

(
ερ2 + ε

(
1 − ρ cos ϑc

sin ϑc

)2

+ (cos ϑc − ρ) sin ϑc

)
u

)∣∣∣∣∣
ϑ=ϑS

= 0 along C, (32)

where �s is the Laplace–Beltrami operator on S that can be expressed in terms of the colatitude
ϑ ∈ [0, ϑS ] and the azimuthal angle ϕ ∈ [0, 2π) on S as

�s := 1

R2

∂2

∂ϑ2
+

1

R2
cot ϑ

∂

∂ϑ
+

1

(R sin ϑ)2

∂2

∂ϕ2
. (33)

The crucial point of the method is that the smallest eigenvalue µmin of the problem (31)–(32)
coincides with the minimum of δ2F on the set (26). Hence, whenever µmin is positive on an
equilibrium configuration, this latter is locally stable, while it is unstable when µmin < 0. By
retracing the steps of [12], we perform a modal analysis by first considering the homogeneous
equation

�su + (µ + 2)u = 0 on S (34)

and then setting

u =
∞∑

m=0

amum(ϑ) trig(mϕ), (35)

where

trig(mϕ) :=
{

sin(mϕ) or cos(mϕ) if m �= 0
1 if m = 0,

and am ∈ R are the coefficients of the expansion. In (34), the factor R−2 in front of �s has
been dropped by rescaling µ to R2. By inserting expansion (35) into (34) we conclude that,
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for every value of m, the function um(ϑ) solves the equation

1

sin ϑ

d

dϑ

[
sin ϑ

dum

dϑ

]
+

[
µ + 2 −

( m

sin ϑ

)2
]

um = 0. (36)

The solution of (36) that is bounded everywhere on S is the associated Legendre function of
the first kind P m

ν (cos ϑ) (see, e.g., chapter 7 of [21]), where the index ν is related to µ by

ν(ν + 1) = µ + 2. (37)

As explained in [12], to guarantee that µ is real, the complex values of ν should obey either

Im(ν) = 0 or Re(ν) = − 1
2 .

Moreover, without lack of generality, it is possible to consider only values of ν with imaginary
part Im(ν) � 0 and real part Re(ν) � − 1

2 . Thus, ν ranges in the set

I := {
ν ∈ [− 1

2 + i0,− 1
2 + i∞) ∪ [− 1

2 , +∞)}
of the complex ν-plane. Modes with ν in the subset

U := {
ν ∈ [− 1

2 + i0,− 1
2 + i∞) ∪ [− 1

2 , 1
)}

are unstable as they correspond, by (37), to negative values of µ. The solution u of (31) with
λ rescaled to R2 differs from u by a constant c related to the multipliers λ and µ through

(µ + 2)c = ν(ν + 1)c = λ, (38)

provided that µ �= −2 or, equivalently, ν �= 0. The function u also satisfies∫ ϑc

0

∫ 2π

0
u(ϑ, ϕ) sin ϑ dϑ dϕ = 0 (39)

to obey the incompressibility constraint (27). In a modal analysis, where conditions are sought
that make a specific mode unstable, the constraint (39) is adjusted mode by mode, by adding
to the function

um(ϑ, ϕ) := P m
ν (cos ϑ) trig(mϕ) m ∈ N (40)

a constant c(ϑS , ν,m) that makes (39) satisfied, so that λ follows from (38) for all ν but ν = 0,
a case that needs a separate treatment. By repeating verbatim the analysis of section 3 in [12]
it is possible to prove that

c(ϑS , ν,m) :=



0 if m �= 0

−cos ϑSPν(cos ϑS) − Pν+1(cos ϑS)

(1 − cos ϑS)ν
if m = 0.

(41)

By fixing m, and replacing u with P m
ν (cos ϑ) trig(mϕ) in (32), we arrive at the following

expression for ε as a function of ϑc and ρ, parameterized by ν and m

εm
ν (ϑc, ρ) = (sin ϑc)

3




(ρ − cos ϑc)(Pν(cos ϑS) + c(ν, ϑS)) + sin ϑc
∂Pν(cos ϑ)

∂ϑ

∣∣
ϑ=ϑS

(1 + ρ2 − 2ρ cos ϑc)(Pν(cos ϑS) + c(ν, ϑS))
, m = 0

(ρ − cos ϑc)P
m
ν (cos ϑS) + sin ϑc

∂P m
ν (cos ϑ)

∂ϑ

∣∣
ϑ=ϑS[

ρ2 − 2ρ cos ϑc − m2
( sin ϑc

sin ϑS

)2
+ 1
]
P m

ν (cos ϑS)
, m � 2.

(42)
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In (42), the value m = 1 has been ruled out. In fact, when P 1
ν (cos ϑ) trig (ϕ) is inserted

into (32), the coefficient in front of ε vanishes identically and (32) has no solution if ν �= 1,
while it is identically satisfied in ϑc and ρ, if ν = 1. This is not surprising, since the function
P 1

1 (cos ϑ) trig ϕ is the component, orthogonal to S, of a rotation of B about the axis ez or
ex , orthogonal to ey in figure 1, and so it is an infinitesimal rigid motion of the droplet along
the substrate. Hence, this mode does not modify the energy of the droplet and, by (37), it
consistently corresponds to µ = 0. In general, modes with µ = 0 will be referred to as the
marginal modes.

We also note that (42) is not defined when ν = n0, where n0 is an integer smaller than m,
since P m

n0
(·) ≡ 0. However, we can rewrite (42)2 as

εm
ν (ϑc, �) = (ρ − cos ϑc)[

ρ2 − 2ρ cos ϑc − m2
( sin ϑc

sin ϑS

)2
+ 1
]

+
sin ϑc

∂P m
ν (cos ϑ)

∂ϑ

∣∣
ϑ=ϑS[

ρ2 − 2ρ cos ϑc − m2
( sin ϑc

sin ϑS

)2
+ 1
]
P m

ν (cos ϑS)
(43)

and use the representation (see equation (7.12.32) of [21])

P m
ν (cos ϑ)

=




0 if ϑ = 0

(−1)m2�(ν + m + 1)√
π�
(
m + 1

2

)
�(ν − m + 1)

1

(2 sin ϑ)m

∫ ϑ

0

cos
(
ν + 1

2

)
t

(2 cos t − 2 cos ϑ)
1
2 −m

dt if ϑ ∈ (0, π)

(44)

to get rid of Euler’s �(ν − m + 1) which is responsible for making P m
n0

vanish identically. In
this way, the function εm

ν (ϑc, �) in (42)2 is meaningful also when ν → n0. Moreover, when
P m

ν (cos ϑ) in (44) is normalized to obey (26), �(ν − m + 1) disappears again and the second
variation of F computed on um(ϑ, ϕ) converges to µ = n0(n0 +1)−2 on the set of normalized
Legendre functions. This procedure makes it also possible to treat the case ν = 0.

It is easier to perform a stability analysis in the set G = {(ϑc, ε, ρ)} by fixing ρ. In fact,
we can easily solve (14) in terms of ε, treated as independent of ρ, arriving at

ε
(
ϑc, ρ

∣∣ϑ0
c

) = �̄
(
ϑc, ρ

∣∣ϑ0
c

)
:=
(
cos ϑc − cos ϑ0

c

)
sin ϑc

ρ cos ϑc − 1
. (45)

By varying ϑ0
c in [0, π ] the graphs of ε

(
ϑc, ρ

∣∣ϑ0
c

)
span the admissible set A (figure 7). The

subset A+ ⊂ A where ε > 0 pertains to positive line tension, while the subset A− ⊂ A
where ε < 0 pertains to negative line tension. Since the intersections between the graphs of
ε
(
ϑc, ρ

∣∣ϑ0
c

)
and ε∗(ϑc, ρ|τ ∗) in (17) cover the set A when ϑ0

c and τ ∗ are varied, any point in
A is an equilibrium configuration corresponding to some point in P . As to stability, we plot
the graphs of the functions εm

ν (ϑc, ρ) defined in (42). Then, we determine the values of ν for
which the graphs of εm

ν (ϑc, ρ) pass through a given point P ∈ A: whenever P is on the graph
of a function εm

ν (ϑc, ρ) with ν ∈ U , the corresponding equilibrium configuration is unstable.
Following the same avenue as in [12], we can check that any point in A lies on some curve
εm
ν (ϑc, ρ), for ν > 1, and so stable modes always exist. When m = 0 the marginal curve

ε1(ϑc, ρ) := ε0
1(ϑc, ρ) divides A+ into two subsets: only the portion below ε1(ϑc, ρ) is locally

stable against modes with m = 0. When m � 2, the typical curve εm
1 (ϑc, ρ) is plotted in

figure 8: the points in A− above the graph of εm
1 (ϑc, ρ) are stable against modes labelled

by m, while the points below it are unstable against the same modes. It is possible to check
numerically that

lim
m→∞ εm

1 (ϑc, ρ) = 0
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Figure 7. A cross section of the admissible set A ⊂ G with the plane � = 0.5. The region drawn
here is bounded by the graphs of �̄(ϑc, 0.5|0) (upper curve) and �̄(ϑc, 0.5|π) (lower curve).
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Figure 8. Cross sections of the surfaces εm
1 (ϑc, �) with the plane ρ = 0.5 of G, for m = 2, 3, 4.

On increasing m, εm
1 (ϑc, 0.5) become closer and closer to the ϑc axis. Any surface εm

1 (ϑc, �) splits
the subset A− of the admissible set A into two subsets: only the subset above this surface is stable
against modes labelled by m. The dashed line is the lower bound of the set A−.

so that the marginal curves tend to ε = 0 and the whole set A− is unstable when m
increases making the perturbed contour line wigglier and wigglier. This is consistent with the
unboundedness from below of the functional F in (1) for negative line tensions. However,
the length scale �m(ϑc, ρ) of the oscillations induced by the destabilizing modes on S could
be smaller than the typical length �c = |ξ | of the model. In that case, the modes would
operate a length scale outside the range where the model based on (1) is acceptable and
where other stabilizing effects, not accounted for in (1), are presumably at work. Thus, to be
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consistent, the induced instability should not be accounted for in our model. One could be led
by intuition to consider the wavelength of the corrugations induced on the contact line C as a
good candidate for �m(ϑc, ρ): on increasing m, the modes induce wigglier corrugations on C.
In fact, on dealing with sessile droplets sitting on flat substrates [12], a smaller length scale
was revealed, which involves the oscillations induced by Legendre functions on the meridians
of an unperturbed spherical droplet. Although the same avenue could be followed here, we
prefer to measure the relative reliability of any reported negative value of τ by answering the
following question: given ϑ0

c , τ ∗ and ξ , how rich is the set of modes that do not destabilize
a droplet? The property of unstable modes outlined before should convince that we need to
control the highest value mrs of m for which modes um are stable: we refer to this number as to
the index of residual stability and we say that an equilibrium configuration is residually stable
if mrs > 2. If mrs = 2 for some values of the constitutive parameters, unstable modes exist
for all values of m, and the equilibrium configurations are simply unstable. The larger is mrs,
the stronger is our expectation that the corresponding negative value of τ is reliable. In the
next section we will see how mrs is affected by the substrate’s curvature.

4. Reverse mapping and bifurcation diagrams

The stability analysis of section 3 was performed in G where (32) was easier to solve. To
explore stability in terms of the constitutive parameters we have to map the results into the
space P and then take sections at fixed 
 or �, according to the ensemble we study. At
variance with [12], where we found an analytic map from the (ϑc, ε)-plane into the

(
ϑ0

c , τ ∗)-
plane, here a numerical strategy is more efficient since the presence of additional parameters
makes the analytic avenue much more involved.

When the line tension is positive, two functions—Tmin
(
ϑ0

c , 

)

and TMax
(
ϑ0

c , 

)
—can be

defined (see appendix C), with the following property: one stable equilibrium and two unstable
equilibria correspond to a given triple

(
ϑ0

c , τ ∗, 

)

if and only if

Tmin
(
ϑ0

c , 

)

< τ ∗ < TMax
(
ϑ0

c , 

)
. (46)

When τ ∗ = Tmin
(
ϑ0

c , 

)

or τ ∗ = TMax
(
ϑ0

c , 

)
, one marginally stable equilibrium and one

unstable equilibrium exist for the triple
(
ϑ0

c , τ ∗, 

)
. An important consequence of the

definition of Tmin
(
ϑ0

c , 

)

and TMax
(
ϑ0

c , 

)

is that the equilibrium p2(τ
∗) is always stable,

when it exists, while the equilibria p1(τ
∗) and p3(τ

∗) are unstable; for this reason, the regions
in figures 3–5 where three equilibria exist are also the only regions where stable configurations
exist (see appendix D).

When the line tension is negative, we already know from section 3 that destabilizing modes
exist for the equilibrium configuration corresponding to a given triple P ≡ (

ϑ0
c , τ ∗, 


)
. We

can define a function T m
Max

(
ϑ0

c , 

)

with the following property: the equilibrium at given ϑ0
c

and 
 is stable against modes um∗ with m∗ ranging from 2 to m if and only if

|τ ∗| < T m
Max

(
ϑ0

c , 

)
.

When 
 → 0, and so the substrate tend to be flat, we recover the results of [12]. For a given

 < 0, the function T m

Max

(
ϑ0

c , 

)

with m > 2 is defined in the interval
(
ϑ̄c

1
(
,m), ϑ̄c

2
(
,m)

)
and diverges when ϑ0

c tends to either ϑ̄c
1
(
,m) or ϑ̄c

2
(
,m). If either ϑ0

c < ϑ̄c
1
(
,m) or

ϑ0
c > ϑ̄c

2
(
,m), the corresponding equilibrium configurations are unstable, regardless of the

value of |τ ∗|. At variance with the case 
 = 0 where ϑ̄c
1
(0,m) = 0 and ϑ̄c

2
(0,m) = π for

any m > 2, when 
 < 0 the interval
(
ϑ̄c

1
(
,m), ϑ̄c

2
(
,m)

)
shrinks on increasing m and

vanishes when m attains a critical value m. While we refer the interested reader to appendix
E for a detailed discussion, here we just draw an important conclusion from this result: for



36 L Guzzardi and R Rosso

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

-lo
g 1

0|
τ *

|

θc
o

(a): Ξ = - 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

-lo
g 1

0|
τ *

|

θc
o

(b): Ξ = - 0.3

Figure 9. Graphs of log10 |T m
Max(ϑ

0
c , 
)| at fixed values of 
. On the left, where 
 = −0.1,

log10 |T m
Max(ϑ

0
c , 0.1)| has been plotted for m = 2, 3, 5, 8, 10. On the right, where 
 = −0.3,

we plotted log10 |T m
Max(ϑ

0
c , 0.3)| for m = 2, 3, 4. When m increases, the domain of the function

T m
Max(ϑ

0
c , 
) shrinks.

any fixed 
 < 0, there exists a value m̄ < +∞ such that any equilibrium configuration
with negative line tension is made unstable by modes um with m � m̄. For instance, when

 = 0.012, 0.1, 0.3, 0.35, 0.5, the values of m̄ are m̄ = 81, 11, 5, 4, 3, respectively (figure 9).
As a consequence, the index of residual stability mrs < m̄ is equal to 2 for any equilibrium
configuration when the radius of the substrate becomes comparable with ξ , as in the case of
colloidal particles. In [12] we showed that for most of the experimental values in [19] reporting
a negative line tension, the index of residual stability was close to 50. Without changing the
values of the line and the surface tensions, the bare contact angle and the volume of the droplet
studied in [19], we conclude that the substrate’s curvature has a destabilizing role, since m̄

falls below 50 when 
 varies from 0.01 to 0.1. This result is important for applications in
colloid science since it proves that a negative line tension is unlikely to stabilize emulsions,
especially when the solid particles are very small. We stress that this result can be arrived at
only by a local stability analysis and not by means of a comparison between energies as made
in [5].

Figure 10(b)–(d) shows the bifurcation diagrams at |
| = 0.3. When ϑ0
c < ϑ0

cm

(figure 10(b)), a stable equilibrium configuration exists provided the droplet’s volume neither
exceeds an upper bound, nor lies below a lower bound. When ϑ0

cm < ϑ0
c < ϑ0

cM (figure 10(c))
a stable equilibrium exists provided that the volume of the droplet is large enough. Finally, if
ϑ0

c > ϑ0
cM (figure 10(d)), no stable equilibrium exists. At this level, where the line tension has

been prescribed, each bifurcation diagram contained in figure 10 is indeed the juxtaposition
of two separate diagrams, one for positive and one for negative line tension. It is worth noting
that on passing from positive to negative line tension the equilibrium contact angle suffers a
jump that vanishes when 
 → 0.

The destabilizing effect of the substrate’s curvature is also shown in figure 2 from which
is clear that, for a given positive line tension and a given droplet’s volume, increasing 
 makes
the region where three equilibria exist smaller: since we now know that this is the only region
where a stable equilibrium exists, the result immediately follows.

To study the effects of line tension on stability, we map our results in the �-ensemble.
Figure 11 refers to ϑ0

c = 7π/16 and ϑ0
c = 9π/16, while � = 100 in both cases. The stable

branches always correspond to the equilibrium p2(τ
∗) which connects to either p3(τ

∗) or
p1(τ

∗), depending on the value of ϑ0
c . Thus, in this case, the results parallel those obtained

for flat substrates: when the line tension is positive a stable equilibrium exists provided that
the line tension lies below a critical value. Figure 12 parallels figure 6 and shows how a
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Figure 10. Bifurcation diagrams at |
| = 0.3, for different values of ϑ0
c . We start discussing the

case where line tension is positive. In (a) we reproduced the part of figure 3 corresponding to

 = 0.3, from which it is possible to see how the number of equilibria varies with τ ∗, according
to the value of ϑ0

c . (b)ϑ0
c = 0.8 < ϑ0

cm. The locally stable equilibrium p2(τ
∗) exists when τ ∗

ranges in [τ ∗
min(ϑ

0
c , 
), τ ∗

Max(ϑ
0
c , 
)], but it is not globally stable (see section 5). Outside this

range, there are no stable equilibria. (c)ϑ0
cm < ϑ0

c = 1.4 < ϑ0
cM . The locally stable equilibrium

p2(τ
∗) exists in the range τ ∗ ∈ [0, τ ∗

Max(ϑ
0
c , 
)], but it is not globally stable (see section 5).

(d)ϑ0
c = 2.2 > ϑ0

cM . Only the unstable equilibrium p1(τ
∗) exists. When τ ∗ < 0, a unique

equilibrium exists which is conditionally stable.
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Figure 11. Bifurcation diagrams at � = 100 and ϑ0
c = 7π/16(a), ϑ0

c = 9π/16(b). When τ ∗ < 0,
a unique equilibrium exists which is unstable against modes with large enough m. When τ ∗ > 0
the solution survives as the branch p2(τ

∗), which is locally, but not globally stable until it merges
at a turning point with an unstable branch: p1(τ

∗) in (a), p3(τ
∗) in (b). An isolated branch exists

for any positive τ ∗, but it is always unstable.

bifurcation diagram like that in figure 11(a) transforms into a diagram like that in figure 11(b)
on decreasing �. We first note that, since � is fixed and we consider only values 
 < 1,

τ ∗ should have an upper bound by (13). In figure 12 we consider the cases where
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Figure 12. Bifurcation diagrams at ϑ0
c = π/3 and � = 3.155(a), 3.105(b), 3.09296(c), and

3.05(d). This diagram shows how a bifurcation diagram like that in figure 11(a) changes in a
bifurcation diagram like that in figure 11(b), when ϑ0

c < π/2 and � is sufficiently small. In
fact the bifurcation diagrams parallel the results introduced in figure 6. When the locally stable
equilibrium p2 exists, it is not globally stable (see section 5).

� ∈ [�1,�0],� ∈ [�c,�1],� = �c and � < �c, respectively; below � = �c, we
recover a diagram like that of figure 11(b).

5. First-order transitions

As mentioned in the introduction, first-order transitions escape the local stability analysis
outlined in sections 3 and 4. To complete our study we need to compare the energy of a
droplet laid on a substrate with that of a droplet detached from a substrate and, possibly,
with that of a droplet surrounding a substrate. This latter case is important when R � r ,
as frequently occurs when colloidal particles are dispersed in an emulsion. We rephrase our
notation into that employed in [5] (see table 1). To draw a meaningful comparison, we note
that the energy G of the particle and the adhering droplet is

G[B] := F[B] + 4πγscR
2,

where the last term is introduced to account for the total energy penalty associated with the
solid-continuous phase interface. Clearly, the last term is a constant that does not affect
the local analysis performed before, but it should be introduced here where G(B) has to be
compared with either the energy Gd of a spherical droplet, detached from the substrate, of
radius

rd := 3

√
3V

4π
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or with the energy Ge of a spherical droplet of radius

re := 3

√
3V

4π
− R3

which encapsulates the substrate of radius R. Both rd and re are chosen so as to enforce the
incompressibility constraint. In the former case

Gd = 4πr2
d γow + 4πR2γsc,

while in the latter

Ge = 4πr2
e γow + 4πR2γsd.

By comparing Gd with Ge, we can easily conclude that

Gd − Ge

3

√(
3V
4π

) =
(

1 − 3

√
1 − Vs

V

)(
1 + 3

√
1 − Vs

V

)
+ cos ϑ0

c

3

√(
Vs

V

)2

, (47)

where Vs := 4πR3

3 is the volume of the substrate. Since, by (13), Vs/V = 4/�3 we also have

Gd − Ge

3

√(
3V
4π

) =

1 − 3

√(
1 − 4

�3

)2

 + cos ϑ0

c

3

√(
4

�2

)2

(48)

from which we see that encapsulation is preferred to detachment whenever

cos ϑ0
c > cos ϑ0∗

c =:


 3

√(
1 − 4

�3

)2

− 1




 3

√(
4

�2

)2



−1

. (49)

In the limit where V � Vs, cos ϑ0∗
c ≈ − 2

3

(
Vs

V

)1/3
, and so ϑ0∗

c approaches π/2. Equation (48)
also shows that Gd − Ge > 0, and so encapsulation is preferred to detachment, whenever
ϑ0

c < π/2 and � >
3
√

2.
After some algebraic manipulations, we arrive at

G[B] = 2πr2γow(1 − cos ϑS) + 2πR2γsc
(
1 + cos ϑS∗

)
+ 2πγsdR

2
(
1 − cos ϑS∗

)
+ 2πτR sin ϑS∗

which should be compared with Ge if (47) holds, and with Gd otherwise. By rescaling the
energies to γow

(
3V
π

)2/3
[22] and recalling the definitions of ϑ0

c (3), � (13), τ ∗ (12), and � (5)
we finally need to ascertain the sign of either

G[B] − Ge = 2π


( �

�

)2
(1 − cos ϑS) − 2

3

√(
1

4
− 1

�3

)2



+
2π

�2
cos ϑ0

c

(
1 + cos ϑS∗

)
+

2π

�
τ ∗ sin ϑS∗ , (50)

if (49) hold

G[B] − Gd = 2π

[( �

�

)2
(1 − cos ϑS) − 1

3
√

2

]
− 2π

�2
cos ϑ0

c (1 − cos ϑS∗) +
2π

�
τ ∗ sin ϑS∗

(51)

otherwise.
A complete study of equations (50)–(51) is beyond the scopes of the present paper. We

checked the sign of the energy differences in equations (50)–(51) in several cases. For the
parameters chosen in figures 10–12, the locally stable branch p2 is never globally stable. In
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Figure 13. A bifurcation diagram at 
 = 0.1 and ϑ0
c = π/4 is plotted together with the graphs of

(50) (solid line) and (51) (dotted line). The locally stable equilibrium p2(ϑc) is also globally stable
when τ ∗ ∈ (0.12, 0.46)—thick, solid segment on the bifurcation diagram—where both (50) and
(51) are negative. Outside this set, either encapsulation (τ ∗ < 0.12) or detachment (τ ∗ > 0.46)

are energetically favoured.

the �-ensemble (figures 11–12), it is easy to determine from (48) if either encapsulation or
detachment is favoured, while this comparison is harder in the 
-ensemble. As a result,
encapsulation is preferred in the cases illustrated in figures 11(a) and 12, whereas detachment
is preferred in the case shown in figure 11(b). On the other hand, figure 13 shows a case
where, for given values of 
 and ϑ0

c , the branch p2 is also globally stable when τ ∗ ranges in
a suitable interval. Encapsulation is preferred when τ ∗ is small enough—and so the droplet’s
volume is large— while detachment is preferred if τ ∗ is large enough. This latter transition
is the analogue of the drying transition found by Widom [22] on a flat substrate, whereas
the transition to encapsulation is induced by the substrate’s curvature. Although we have no
elements to state a general rule, there are indications that the substrate’s curvature hampers
the global stability of equilibria with the droplet sitting on the substrate.

6. Conclusions

The stability of sessile droplets laid upon a spherical substrate was studied by applying a
general stability criterion. As in the case where the substrate is flat, different behaviours exist
according to the sign of line tension. Here, however, there is a complex interplay between the
bare contact angle and the typical length scales of the problem that makes the results of the
stability analysis rather interesting also for positive line tensions. In particular, we singled out
regimes where the presence of a curved substrate prevents the existence of locally stable sessile
droplets. In this case, the droplet can either detach itself from the substrate or can wrap around
the substrate, if this latter is sufficiently small, depending on the bare contact angle. The
substrate’s curvature enhances the destabilizing role of negative line tensions by drastically
reducing the index of residual instability as compared to the case where the substrate is flat.
This leads us to a critical reconsideration of claims concerning the stabilizing role played by
negative line tension on emulsions that were based only upon energy comparisons. Finally,
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we also performed a global stability analysis in several cases that indicate how the substrate’s
curvature hampers the global stability of sessile droplets.

The results of this paper call for different extensions. First, the lack of stability for positive
line tension demands a deepen study that will be presented elsewhere [23]. In particular, it
would be interesting to optimize the range in the �-ensemble where no stable equilibria exist,
by looking at its dependence on the bare contact angle. Extensions to other geometries that
were preliminary studied in [24] could also be pursued, as well as a complete treatment of
global stability. It would also be interesting to apply the techniques employed here to assess
the local stability of acicular particles at an interface between two liquids, to complete the
global stability analysis performed in [25]. Finally, a systematic study of curvature corrections
in the free-energy functional (1) will help in clarifying the destabilizing role played by line
tension [15].
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Appendix A. The functions τ ∗M
c

(
ϑ0

c, Ξ
)

and τ ∗m
c

(
ϑ0

c, Ξ
)

The function ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
defined in (19) attains a local maximum ϒM

(
τ ∗∣∣ϑ0

c , 

)

at ϑc =:
ϑM

cϒ which is determined by use of Netwon’s method (see, e.g., [26]) which does not involve
the derivative of ϒ

(
ϑc

∣∣ϑ0
c , τ ∗, 


)
. For a given pair

(
ϑ0

c , 

)
, the function ϒM(τ ∗) is strictly

decreasing and hence it vanishes at one point τ ∗M
c

(
ϑ0

c , 

)
, at most. Moreover, since |τ ∗| < 1,

by (23) τ ∗M
c

(
ϑ0

c , 

)

exists if and only if

ϒM(1) < 0 ∩ �M
(
ϑ0

c , 

)

> 0.

To compute τ ∗M
c

(
ϑ0

c , 

)
, we first determine ϒM

(
τ ∗∣∣ϑ0

c , 

)

by resorting to approximation
methods, and then we note that ϒM(1|ϑ0

c , 
) < 0 while ϒM(10−i |ϑ0
c , 
) > 0 for an integer

i > 0. Since τ ∗M
c

(
ϑ0

c , 

)

is the zero of ϒM
(
τ ∗∣∣ϑ0

c , 

)
, applying the bisection method to

ϒM
(
τ ∗∣∣ϑ0

c , 

)

yields τ ∗M
c

(
ϑ0

c , 

)
. A similar avenue is followed to define and approximate

τ ∗m
c

(
ϑ0

c , 

)
.

Appendix B. The critical value Λc

(
ϑ0

c

)
We determine a sequence {�n} that converges to the critical value �c

(
ϑ0

c

)
of � defined in

section 2. We first recall that if �c < �n < 1
/
τ ∗m
c , the �n-curve intersects the curve τ ∗M

c

at 
 = 
1
�n

and at 
 = 
2
�n

> 
1
�n

. We also note that if �c < �1 < �2 < 1
/
τ ∗m
c the

�1-curve and the �2-curve do not intersect each other because of their convexity and that the
following relation holds:


1
�1

< 
1
�2

< 
2
�2

< 
2
�1

. (B.1)

We define the sequence {�n} by use of the following recursive procedure.

• Given �n and the points 
1
�n

,
2
�n

, we select 
�n+1 ∈ (

1

�n
,
1

�n

)
. To improve the

convergence rate of the sequence {�n}, 
�n+1 is taken as the abscissa of the intersection
between the tangent lines to the �n-curve at the points 
1

�n
and 
2

�n
.

• From (13), we determine the unique value �n+1 of � such that the �n+1-curve passes
through the point 
�n+1 .

• We ascertain if 
�n+1 is the smallest or the largest intersection between the �n+1-curve
and τ ∗M

c by evaluating the difference between these functions when 
 � 
�n+1 .
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• We compute the other intersection between the �n+1-curve and τ ∗M
c by the bisection

method.

The sequence {�n} converges to �c since

lim
n→∞

(

2

�n
− 
1

�n

) = 0, (B.2)

as can be proved by use of (B.1).

Appendix C. The functions Tmin
(
ϑ0

c, Ξ
)
, TMax

(
ϑ0

c, Ξ
)

and T m
Max

(
ϑ0

c, Ξ
)

In section 3 we introduced the marginal curves defined through (42). There, we worked at
fixed values of ρ, to use planar sets of G. To rephrase the stability analysis in the space P we
need to study the marginal curves with fixed parameters ϑ0

c and 
. Since ρ is given by (18)
on an equilibrium configuration, we can define the function

Sm
(
ϑc

∣∣ϑ0
c , 


)
:= εm

1

(
ϑc, f

(
ϑc

∣∣ϑ0
c , 


))
. (C.1)

Let us first focus on positive line tensions. Since ε obeys (15) and, for any fixed ρ, the region
in A+ below ε0

1(ϑc, ρ) is stable, we can define the stable interval as the subset of A+ where,
for any given pair

(
ϑ0

c , 

)
, the inequality

S
(
ϑc

∣∣ϑ0
c , 


)
:= S0

(
ϑc

∣∣ϑ0
c , 


)
� �

(
ϑc

∣∣ϑ0
c , 


)
(C.2)

holds. Only points in G satisfying inequality (C.2) are stable and hence, to determine the
stability of equilibria in P , we find the values of τ ∗ � 0 for which one root of (19) belongs
to the stable interval. Let Tmin

(
ϑ0

c , 

)

and TMax
(
ϑ0

c , 

)

be the values of τ ∗ such that a zero
of (19) is either at the left- or at the right-end of the stable interval. Hence, a given triple(
ϑ0

c , τ ∗, 

)

has one stable equilibrium if inequality (46) holds. To arrive at Tmin
(
ϑ0

c , 

)

and
TMax

(
ϑ0

c , 

)
, we first determine the left- and the right-end points of the stable interval by

solving the equation

�
(
ϑc

∣∣ϑ0
c , 


) = S0
(
ϑc

∣∣ϑ0
c , 


)
> 0. (C.3)

In solving (C.3)1 we disregard the spurious solutions with �
(
ϑc

∣∣ϑ0
c , 


) = 0 that always exist.
In fact, as explained in section 2, when �

(
ϑc

∣∣ϑ0
c , 


) → 0, f
(
ϑc

∣∣ϑ0
c , 


)
diverges and so,

by equations (11), (15) and (18) both ε0
m and S0

(
ϑc

∣∣ϑ0
c , 


)
tend to zero. However, we also

remarked in section 2 that ε = 0 is an acceptable equilibrium solution only when line tension
vanishes. Hence, when the left-end point of the stable interval satisfies �

(
ϑc

∣∣ϑ0
c , 


) = 0,
only the function TMax

(
ϑ0

c , 

)

is defined and we can set Tmin
(
ϑ0

c , 

) ≡ 0.

Solving (C.3)1 is a non-trivial task since we do not know a priori how many roots it has.
To overcome this difficulty, after approximating the functions S0

(
ϑc

∣∣ϑ0
c , 


)
and �

(
ϑc

∣∣ϑ0
c , 


)
by means of polynomials, we resorted to simultaneous zero-finding algorithms (see, e.g., [27]
and [28]).

The second step is the evaluation of the functions TMax
(
ϑ0

c , 

)

and Tmin
(
ϑ0

c , 

)
. Let the

stable interval lie between ϑ0
c = ϑ1

c and ϑ0
c = ϑ2

c > ϑ1
c . The function Tmin

(
ϑ0

c , 

)

is defined
as the zero of the equation

ϒ
(
ϑ1

c

∣∣ϑ0
c , Tmin

(
ϑ0

c , 

)
, 

) = 0, (C.4)

and it is well defined because ϒ
(
ϑc

∣∣ϑ0
c , τ ∗, 


)
is a strictly decreasing function of τ ∗ and

�
(
ϑ1

c

∣∣ϑ0
c , 


)
> 0. Similarly, the function TMax

(
ϑ0

c , 

)

is defined as the zero of the
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Figure 14. Graphs of several functions have been plotted in the (ϑc, ε)-plane, for (ϑ0
c , 
) =

( π
2 , 0.1)(a) and ( π

3 , 0.3)(b). In (a) the solid lines represent S(ϑc| π
2 , 0.1)—the graph with a cusp—

and �(ϑc| π
2 , 0.1). Dashed lines represent ϒ(ϑc| π

2 , 0.1529, 0.1) and ϒ(ϑc| π
2 , 0.2751, 0.1).

The stable interval is the solid segment [1.5708, 2.30465] bounded by the values of ϑc

where �(ϑc| π
2 , 0.1) and ϒ(ϑc| π

2 , 0.2751, 0.1) intersect the ϑc axis. In this case, the root
p2(τ

∗) of equations (15) and (19) corresponds to a stable equilibrium configuration when
τ ∗ � T ∗

Max(ϑ
0
c , 
) = τM

c (ϑ0
c , 
). In (b) the solid lines represent S(ϑc| π

3 , 0.3) (upper curve)
and �(ϑc| π

3 , 0.3), while the dashed lines are ϒ(ϑc| π
3 , 0.001, 0.3), ϒ(ϑc| π

3 , 1.2510−7, 0.3) and
ϒ(ϑc| π

3 , 1.3220210−13, 0.3). The stable interval is now the solid segment [0.6911, 2.0483]
bounded by the intersections of ϒ(ϑc| π

3 , 1.3220210−13, 0.3) and ϒ(ϑc| π
3 , 0.001, 0.3) with the

ϑc-axis.

equation:

ϒ
(
ϑ2

c

∣∣ϑ0
c , TMax

(
ϑ0

c , 

)
, 

) = 0. (C.5)

To evaluate Tmin
(
ϑ0

c , 

)

and TMax
(
ϑ0

c , 

)
, we only need to apply the bisection method to

equations (C.4)–(C.5), using the values of ϑ1
c and ϑ2

c obtained at the first step.
We conclude by sketching the definition of T m

Max

(
ϑ0

c , 

)
, required when τ ∗ < 0. The

m-stable interval is defined as the subset of A− where

Sm
(
ϑc

∣∣ϑ0
c , 


)
� �

(
ϑc

∣∣ϑ0
c , 


)
with m � 2. (C.6)

As before, the end-points of the m-stable interval satisfy the equation

�
(
ϑc

∣∣ϑ0
c , 


) = Sm
(
ϑc

∣∣ϑ0
c , 


)
< 0 (C.7)

which possesses at most one solution ϑ2
c that, in turn, is smaller than the unique zero ϑ̄c

(1)

of �
(
ϑc

∣∣ϑ0
c , 


)
when the line tension is negative. Since �

(
ϑc

∣∣ϑ0
c , 


)
is negative if and only

if ϑc < ϑ̄c
(1), and Sm

(
ϑc

∣∣ϑ0
c , 


)
is non positive, we conclude that the m-stable interval is[

ϑ2
c , ϑ̄c

(1)] and so it has the spurious solution to (C.7) as its right-end point.

Appendix D. Stability of the equilibrium configuration p2(τ ∗)

A numerical computation shows that the functions Tmin
(
ϑ0

c , 

)

and TMax
(
ϑ0

c , 

)

coincide,
respectively, with the functions τ ∗m

c

(
ϑ0

c , 

)

and τ ∗M
c

(
ϑ0

c , 

)

defined in section 2. Hence
the equilibria p2 and p3 coalesce precisely at the right-end point of the stable interval while
coalescence of p1 and p2 occurs at the left-end point of the stable interval: the marginal curve
passes through the points where the number of solutions varies from three to one and a turning
point is expected in the bifurcation diagrams. Whenever the left end-point of a stable interval is
also a root of (15) (see figure 14) we conclude that there exists a critical value TMax

(
ϑ0

c , 

)

such
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Figure 15. The functions �(ϑc|ϑ0
c , 
) and Sm(ϑc|ϑ0

c , 
) for 
 = 0.1,m = 3 and ϑ0
c = π/4

and ϑ0
c = 0.3 ≡ ϑms

c (0.1, 3) have been plotted here. On moving ϑ0
c towards the value ϑ0

c = 0.3
the 3-stable interval shrinks. At ϑ0

c = 0.3, the functions �(ϑc|ϑ0
c , 
) and Sm(ϑc|ϑ0

c , 
) have the
same tangent line.
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Figure 16. The function �(ϑc|ϑ0
c , 
) for ϑ0

c = π/2 has been plotted together with the functions
Sm(ϑc|ϑ0

c , 
) for 
 = 0.1, and m = 3, 5, 15. The curves S3(ϑc|ϑ0
c , 
) and S5(ϑc|ϑ0

c , 
)

intersect �(ϑc|ϑ0
c , 
) twice. The smallest intersection determines ϑ2

c whereas the larger is always
the unique root of �(ϑc|ϑ0

c , 
). When m � 15 only this latter intersection �(ϑc|ϑ0
c , 
) and

Sm(ϑc|ϑ0
c , 
) survives and so the function T m

Max(ϑ
0
c , 
) cannot be defined.

that the root p2(τ
∗) is stable for τ ∗ ∈ [0, TMax

(
ϑ0

c , 

)]

, and unstable otherwise. In the general
case a further critical value Tmin

(
ϑ0

c , 

)

of τ ∗ exists such that the equilibrium configuration
p2(τ

∗) is stable when τ ∗ ∈ [Tmin
(
ϑ0

c , 

)
, TMax

(
ϑ0

c , 

)]

, and unstable elsewhere.

Appendix E. The critical value m̄ for curved substrates

The function T m
Max

(
ϑ0

c , 

)

is defined in the interval
(
ϑ̄c

1
(
,m), ϑ̄c

2
(
,m)

)
whose length

depends on the value of ϑ2
c introduced in appendix C. In fact, if we fix 
 and m while varying

ϑ0
c , the length of the m-stable interval attains its maximum when ϑ0

c = ϑms
c (
,m). On

moving the value of ϑ0
c away from ϑms

c , the point ϑ2
c moves towards ϑ̄c

(1) and the m-stable



Droplets on a curved substrate 45

interval shrinks. Since ϑ0
c is a continuous parameter, it is possible to find two values of ϑ0

c ,
say ϑ̄c

1
(
,m) < ϑms

c and ϑ̄c
2
(
,m) > ϑms

c for which ϑ2
c ≡ ϑ̄c

(1) and so the m-stable interval
reduces to a single point ϑ2

c where the functions �
(
ϑc

∣∣ϑ0
c , 


)
and Sm

(
ϑc

∣∣ϑ0
c , 


)
have the

same slope. If ϑ0
c < ϑ̄c

1
(
,m) or ϑ0

c > ϑ̄c
2
(
,m) the point ϑ2

c does not exist and hence
the function T m

Max

(
ϑ0

c , 

)

cannot be defined (see figure 15). As a second step we fix 
 and
ϑ0

c to show that the function T m
Max

(
ϑ0

c , 

)

cannot be defined if m is sufficiently large. Now,
ϑ2

c exists when m is sufficiently small. On increasing m, since Sm
(
ϑc

∣∣ϑ0
c , 


)
tends to the

x-axis, ϑ2
c moves on the right towards the right-end point of the m-stable interval. Thus,

for a sufficiently large value mϑ0
c

of m, the unique intersection between �
(
ϑc

∣∣ϑ0
c , 


)
and

Sm
(
ϑc

∣∣ϑ0
c , 


)
is ϑ̄c

(1)—the unique root of �
(
ϑc

∣∣ϑ0
c , 


)
—and ϑ2

c disappears (figure 16). If
m is further increased, the function T m

Max

(
ϑ0

c , 

)

cannot be defined. The critical value m̄

introduced in section 4 is then

m̄ = max
ϑ0

c ∈[0,π]

{
mϑ0

c

}
.
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